Rational zeros of a function of three variables
For any integer , consider the three functions
and their combination
We call a golden triple of order if , , and are all rational numbers of the form with and there is (at least) one integer , so that .
Let .
Let be the sum of all distinct for all golden triples of order .
All the and must be in reduced form.
Find .
有三个自变量的函数的有理零点
对于任意整数,考虑这三个函数
以及它们的组合
考虑三元组,若、和都可以表示为满足的有理数,且(至少)存在一个整数使得,则称其为阶黄金三元组。
记。
考虑所有阶黄金三元组所对应的,记其中所有不同的取值之和为。
所有的以及都表示为最简分数。
求。
Gitalking ...