0%

Problem 180


Problem 180


Rational zeros of a function of three variables

For any integer n, consider the three functions

f1,n(x,y,z)=xn+1+yn+1zn+1
f2,n(x,y,z)=(xy+yz+zx)(xn1+yn1zn1)
f3,n(x,y,z)=xyz(xn2+yn2zn2)

and their combination

fn(x,y,z)=f1,n(x,y,z)+f2,n(x,y,z)f3,n(x,y,z)

We call (x,y,z) a golden triple of order k if x, y, and z are all rational numbers of the form a/b with 0<a<bk and there is (at least) one integer n, so that fn(x,y,z)=0.

Let s(x,y,z)=x+y+z.
Let t=u/v be the sum of all distinct s(x,y,z) for all golden triples (x,y,z) of order 35.
All the s(x,y,z) and t must be in reduced form.

Find u+v.


有三个自变量的函数的有理零点

对于任意整数n,考虑这三个函数

f1,n(x,y,z)=xn+1+yn+1zn+1
f2,n(x,y,z)=(xy+yz+zx)(xn1+yn1zn1)
f3,n(x,y,z)=xyz(xn2+yn2zn2)

以及它们的组合

fn(x,y,z)=f1,n(x,y,z)+f2,n(x,y,z)f3,n(x,y,z)

考虑三元组(x,y,z),若xyz都可以表示为满足0<a<bk的有理数a/b,且(至少)存在一个整数n使得fn(x,y,z)=0,则称其为k阶黄金三元组。

s(x,y,z)=x+y+z
考虑所有35阶黄金三元组(x,y,z)所对应的s(x,y,z),记其中所有不同的取值之和为t=u/v
所有的s(x,y,z)以及t都表示为最简分数。

u+v


Gitalking ...