0%

Problem 186


Problem 186


Connectedness of a network

Here are the records from a busy telephone system with one million users:

Rec Nr Caller Called
1 200007 100053
2 600183 500439
3 600863 701497

The telephone number of the caller and the called number in record n are Caller(n) = S2n-1 and Called(n) = S2n where S1,2,3,… come from the “Lagged Fibonacci Generator”:

For 1 ≤ k ≤ 55, Sk = [100003 - 200003k + 300007k3] (modulo 1000000)
For 56 ≤ k, Sk = [Sk-24 + Sk-55] (modulo 1000000)

If Caller(n) = Called(n) then the user is assumed to have misdialled and the call fails; otherwise the call is successful.

From the start of the records, we say that any pair of users X and Y are friends if X calls Y or vice-versa. Similarly, X is a friend of a friend of Z if X is a friend of Y and Y is a friend of Z; and so on for longer chains.

The Prime Minister’s phone number is 524287. After how many successful calls, not counting misdials, will 99% of the users (including the PM) be a friend, or a friend of a friend etc., of the Prime Minister?


网络连通性

以下是一个有着一百万用户的忙碌电话系统的部分记录:

编号 呼叫 接听
1 200007 100053
2 600183 500439
3 600863 701497

编号为n的记录中,呼叫者的电话号码是Caller(n) = S2n-1,接听者的电话号码是Called(n) = S2n,其中S1,2,3,…来自于所谓“延迟斐波那契随机数生成器”:

对于1 ≤ k ≤ 55,Sk = [100003 - 200003k + 300007k3] (modulo 1000000)
对于56 ≤ k,Sk = [Sk-24 + Sk-55] (modulo 1000000)

如果Caller(n) = Called(n),那么我们认为呼叫者拨错了号码,呼叫失败;否则我们认为呼叫成功。

根据这份记录,如果X曾经呼叫过Y或者Y呼叫过X,则我们认为这两个电话用户X和Y是朋友。同样的,如果X是Y的朋友,Y是Z的朋友,那么我们说X是Z的朋友的朋友;我们可以同理组成更长的“朋友”链。

首相的电话号码是524287。在多少次呼叫成功(不计呼叫失败)之后,99%的用户(包括首相)将会成为首相的朋友,或是朋友的朋友,或是朋友的朋友的朋友……?