0%

Problem 188


Problem 188


The hyperexponentiation of a number

The hyperexponentiation or tetration of a number a by a positive integer b, denoted by a↑↑b or ba, is recursively defined by:

a↑↑1 = a,
a↑↑(k+1) = a(a↑↑k).

Thus we have e.g. 3↑↑2 = 33 = 27, hence 3↑↑3 = 327 = 7625597484987 and 3↑↑4 is roughly 103.6383346400240996*10^12.

Find the last 8 digits of 1777↑↑1855.


数的超幂

数a的正整数b次超幂迭代幂次,记作a↑↑b或ba,按照如下方式递归定义:

a↑↑1 = a,
a↑↑(k+1) = a(a↑↑k).

举例来说,3↑↑2 = 33 = 27,因此3↑↑3 = 327 = 7625597484987,而3↑↑4约为103.6383346400240996*10^12

求1777↑↑1855的最后8位数字。