Quadratic Primes
Euler discovered the remarkable quadratic formula:
It turns out that the formula will produce primes for the consecutive integer values . However, when , is divisible by , and certainly when , is clearly divisible by .
The incredible formula was discovered, which produces primes for the consecutive values . The product of the coefficients, and , is .
Considering quadratics of the form:
, where and ,
where is the modulus/absolute value of , e.g. and .
Find the product of the coefficients, and , for the quadratic expression that produces the maximum number of primes for consecutive values of , starting with .
素数生成二次多项式
欧拉发现了这个著名的二次多项式:
对范围内的所有整数,这个多项式可以连续生成个质数。但是,当时,能够被整除,而当时,显然也能够被整除。
之后,人们又发现了一个神奇的多项式,这个多项式能够对范围内的所有整数连续生成个质数。这个二次多项式的系数分别是和,其乘积为。
考虑所有如下形式的二次多项式:
,其中,。
这里表示的绝对值,例如,,。
找出其中能够从开始连续生成最多素数的二次多项式,求其系数和的乘积。
Gitalking ...