0%

Problem 27


Problem 27


Quadratic Primes

Euler discovered the remarkable quadratic formula:

n2+n+41

It turns out that the formula will produce 40 primes for the consecutive integer values 0n39. However, when n=40, 402+40+41=40(40+1)+41 is divisible by 41, and certainly when n=41, 412+41+41 is clearly divisible by 41.

The incredible formula n279n+1601 was discovered, which produces 80 primes for the consecutive values 0n79. The product of the coefficients, 79 and 1601, is 126479.

Considering quadratics of the form:

n2+an+b, where |a|<1000 and |b|1000,

where |n| is the modulus/absolute value of n, e.g. |11|=11 and |4|=4.

Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n=0.


素数生成二次多项式

欧拉发现了这个著名的二次多项式:

n2+n+41

0n39范围内的所有整数,这个多项式可以连续生成40个质数。但是,当n=40时,402+40+41=40(40+1)+41能够被41整除,而当n=41时,412+41+41显然也能够被41整除。

之后,人们又发现了一个神奇的多项式n279n+1601,这个多项式能够对0n79范围内的所有整数连续生成80个质数。这个二次多项式的系数分别是791601,其乘积为126479

考虑所有如下形式的二次多项式:
n2+an+b,其中|a|<1000|b|1000

这里|n|表示n的绝对值,例如,|11|=11|4|=4

找出其中能够从n=0开始连续生成最多素数的二次多项式,求其系数ab的乘积。


Gitalking ...