0%

Problem 29


Problem 29


Distinct Powers

Consider all integer combinations of ab for 2a5 and 2b5:

22=4,23=8,24=16,25=3232=9,33=27,34=81,35=24342=16,43=64,44=256,45=102452=25,53=125,54=625,55=3125

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

4,8,9,16,25,27,32,64,81,125,243,256,625,1024,3125

How many distinct terms are in the sequence generated by ab for 2a100 and 2b100?


不同的幂

考虑所有满足2a52b5的幂ab

22=4,23=8,24=16,25=3232=9,33=27,34=81,35=24342=16,43=64,44=256,45=102452=25,53=125,54=625,55=3125
如果把这些幂从小到大排列并去重,可以得到如下由15个不同的项组成的数列:

4,8,9,16,25,27,32,64,81,125,243,256,625,1024,3125

考虑所有满足2a1002b100的幂ab,将它们排列并去重所得到的数列有多少个不同的项?


Gitalking ...