Problem 330 题目发布于 2011-03-27 翻译更新于 2023-03-14 Problem 330 Euler’s Number An infinite sequence of real numbers a(n) is defined for all integers n as follows: For example,a(0)=11!+12!+13!+…=e−1a(1)=e−11!+12!+13!+…=2e−3a(2)=2e−31!+e−12!+13!+…=72e−6with e=2.7182818… being Euler’s constant. It can be shown that a(n) is of the form A(n)e+B(n)n! for integers A(n) and B(n).For example a(10)=328161643e−65269448610!. Find A(109)+B(109) and give your answer mod 77 777 777. 欧拉数 无穷实数序列a(n)按如下方式定义: 例如,a(0)=11!+12!+13!+…=e−1a(1)=e−11!+12!+13!+…=2e−3a(2)=2e−31!+e−12!+13!+…=72e−6其中e=2.7182818…是欧拉常数。 可以发现a(n)总是可以表达为A(n)e+B(n)n!的形式,其中A(n)和B(n)均为整数。例如a(10)=328161643e−65269448610!。 求A(109)+B(109),并将你的答案模77 777 777取余。
Gitalking ...