0%

Problem 330


Problem 330


Euler’s Number

An infinite sequence of real numbers a(n) is defined for all integers n as follows:

For example,
a(0)=11!+12!+13!+=e1
a(1)=e11!+12!+13!+=2e3
a(2)=2e31!+e12!+13!+=72e6
with e=2.7182818 being Euler’s constant.

It can be shown that a(n) is of the form A(n)e+B(n)n! for integers A(n) and B(n).
For example a(10)=328161643e65269448610!.

Find A(109)+B(109) and give your answer mod 77 777 777.


欧拉数

无穷实数序列a(n)按如下方式定义:

例如,
a(0)=11!+12!+13!+=e1
a(1)=e11!+12!+13!+=2e3
a(2)=2e31!+e12!+13!+=72e6
其中e=2.7182818是欧拉常数。

可以发现a(n)总是可以表达为A(n)e+B(n)n!的形式,其中A(n)B(n)均为整数。
例如a(10)=328161643e65269448610!

A(109)+B(109),并将你的答案模77 777 777取余。


Gitalking ...