0%

Problem 37


Problem 37


Truncatable primes

The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.

Find the sum of the only eleven primes that are both truncatable from left to right and right to left.

NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.


可截素数

3797有着奇特的性质。不仅它本身是一个素数,而且如果从左往右逐一截去数字,剩下的仍然都是素数:3797、797、97和7;同样地,如果从右往左逐一截去数字,剩下的也依然都是素数:3797、379、37和3。

只有11个素数,无论从左往右还是从右往左逐一截去数字,剩下的仍然都是素数,求这些数的和。

注意:2、3、5和7不被视为可截素数。