0%

Problem 483


Problem 483


Repeated permutation

We define a permutation as an operation that rearranges the order of the elements {1,2,3,,n}. There are n! such permutations, one of which leaves the elements in their initial order. For n=3 we have 3!=6 permutations:

  • P1 = keep the initial order
  • P2 = exchange the 1st and 2nd elements
  • P3 = exchange the 1st and 3rd elements
  • P4 = exchange the 2nd and 3rd elements
  • P5 = rotate the elements to the right
  • P6 = rotate the elements to the left

If we select one of these permutations, and we re-apply the same permutation repeatedly, we eventually restore the initial order.
For a permutation Pi, let f(Pi) be the number of steps required to restore the initial order by applying the permutation Pi repeatedly.

For n=3, we obtain:

  • f(P1)=1:(1,2,3)(1,2,3)
  • f(P2)=2:(1,2,3)(2,1,3)(1,2,3)
  • f(P3)=2:(1,2,3)(3,2,1)(1,2,3)
  • f(P4)=2:(1,2,3)(1,3,2)(1,2,3)
  • f(P5)=3:(1,2,3)(3,1,2)(2,3,1)(1,2,3)
  • f(P6)=3:(1,2,3)(2,3,1)(3,1,2)(1,2,3)

Let g(n) be the average value of f2(Pi) over all permutations Pi of length n.

g(3)=(12+22+22+22+32+32)/3!=31/65.166666667e0

g(5)=2081/1201.734166667e1

g(20)=12422728886023769167301/24329020081766400005.106136147e3

Find g(350) and write the answer in scientific notation rounded to 10 significant digits, using a lowercase e to separate mantissa and exponent, as in the examples above.


重复进行的重排

将改变序列{1,2,3,,n}中元素顺序的操作称为重排。一共有n!种重排,其中一种就是保持所有元素的位置不变。对于n=3,有如下3!=6种重排:

  • P1 = 保持顺序不变
  • P2 = 交换第一个和第二个元素
  • P3 = 交换第一个和第三个元素
  • P4 = 交换第二个和第三个元素
  • P5 = 循环右移一位
  • P6 = 循环左移一位

如果从这些重排中选择一种,并且对重排后的序列重复进行相同的重排,最终元素会回到初始顺序。
对于任意重排Pi,记f(Pi)为回到初始顺序所需要的重复次数。

对于n=3可以得到:

  • f(P1)=1:(1,2,3)(1,2,3)
  • f(P2)=2:(1,2,3)(2,1,3)(1,2,3)
  • f(P3)=2:(1,2,3)(3,2,1)(1,2,3)
  • f(P4)=2:(1,2,3)(1,3,2)(1,2,3)
  • f(P5)=3:(1,2,3)(3,1,2)(2,3,1)(1,2,3)
  • f(P6)=3:(1,2,3)(2,3,1)(3,1,2)(1,2,3)

对于所有长度为n的重排Pi,记g(n)f2(Pi)的平均值。

g(3)=(12+22+22+22+32+32)/3!=31/65.166666667e0

g(5)=2081/1201.734166667e1

g(20)=12422728886023769167301/24329020081766400005.106136147e3

g(350),并用四舍五入至10位小数的科学计数法表示,用小写字母e来分隔尾数和指数,如上述样例所示。


Gitalking ...