Problem 505 题目发布于 2015-03-01 翻译更新于 2015-10-02 Problem 505 Bidirectional Recurrence Let:x(0)=0x(1)=1x(2k)=(3x(k)+2x(⌊k2⌋)) mod 260 for k≥1, where ⌊ ⌋ is the floor functionx(2k+1)=(2x(k)+3x(⌊k2⌋)) mod 260 for k≥1yn(k)=x(k) if k≥nyn(k)=260−1−max(yn(2k),yn(2k+1)) if k<nA(n)=yn(1) You are given:x(2)=3x(3)=2x(4)=11y4(4)=11y4(3)=260−9y4(2)=260−12y4(1)=A(4)=8A(10)=260−34A(103)=101881 Find A(1012). 双向递归 记:x(0)=0x(1)=1对于,其中是下取整函数x(2k)=(3x(k)+2x(⌊k2⌋)) mod 260 对于 k≥1,其中⌊ ⌋是下取整函数对于x(2k+1)=(2x(k)+3x(⌊k2⌋)) mod 260 对于 k≥1yn(k)=x(k) if k≥nyn(k)=260−1−max(yn(2k),yn(2k+1)) if k<nA(n)=yn(1) 已知:x(2)=3x(3)=2x(4)=11y4(4)=11y4(3)=260−9y4(2)=260−12y4(1)=A(4)=8A(10)=260−34A(103)=101881 求A(1012)。
Gitalking ...