0%

Problem 53


Problem 53


Combinatoric Selections

There are exactly ten ways of selecting three from five, 12345:

123,124,125,134,135,145,234,235,245, and 345

In combinatorics, we use the notation, (53)=10.

In general, (nr)=n!r!(nr)!, where rn, n!=n×(n1)××3×2×1, and 0!=1.

It is not until n=23, that a value exceeds one-million:
(2310)=1144066.

How many, not necessarily distinct, values of (nr), for 1n100, are greater than one-million?


组合选择

从五个数12345中选择三个恰好有十种方式,分别是:

123,124,125,134,135,145,234,235,245345

在组合数学中,我们记作:(53)=10

一般来说,(nr)=n!r!(nr)!,其中rnn!=n×(n1)××3×2×1,且0!=1

n=23时,首次出现超出一百万的组合数:(2310)=1144066

对于1n100,有多少个不同形式的组合数(nr)超过一百万?


Gitalking ...