Problem 53 题目发布于 2003-09-26 翻译更新于 2025-03-16 Problem 53 Combinatoric SelectionsThere are exactly ten ways of selecting three from five, 12345: 123,124,125,134,135,145,234,235,245, and 345 In combinatorics, we use the notation, (53)=10. In general, (nr)=n!r!(n−r)!, where r≤n, n!=n×(n−1)×…×3×2×1, and 0!=1. It is not until n=23, that a value exceeds one-million:(2310)=1144066. How many, not necessarily distinct, values of (nr), for 1≤n≤100, are greater than one-million? 组合选择从五个数12345中选择三个恰好有十种方式,分别是: 和123,124,125,134,135,145,234,235,245和345 在组合数学中,我们记作:(53)=10。 一般来说,(nr)=n!r!(n−r)!,其中r≤n,n!=n×(n−1)×…×3×2×1,且0!=1。 在n=23时,首次出现超出一百万的组合数:(2310)=1144066。 对于1≤n≤100,有多少个不同形式的组合数(nr)超过一百万?
Gitalking ...