Problem 561
Divisor Pairs
Let S(n) be the number of pairs (a,b) of distinct divisors of n such that a divides b.
For n=6 we get the following pairs: (1,2), (1,3), (1,6), (2,6) and (3,6). So S(6)=5.
Let
Let E(m, n) be the highest integer k such that
E(2,1) = 0 since
Let
Q(8)=2714886.
Evaluate
约数对
记S(n)为n的不同约数组成的约数对(a,b)的数目,其中a整除b。
对于n=6,我们有如下约数对:(1,2),(1,3),(1,6),(2,6)和(3,6)。因此S(6)=5。
记
记E(m, n)为使得
已知E(2,1) = 0,因为
记
已知Q(8)=2714886。
求
Gitalking ...