Problem 564
Maximal polygons
A line segment of length 2n-3 is randomly split into n segments of integer length (
Let E(n) be the expected value of the area that is obtained by this procedure.
For example, for n=3 the only possible split of the line segment of length 3 results in three line segments with length 1, that form an equilateral triangle with an area of
For n=4 you can find 4 different possible splits, each of which is composed of three line segments with length 1 and one line segment with length 2. All of these splits lead to the same maximal quadrilateral with an area of
Let
For example, S(3)=0.433013, S(4)=1.732051, S(5)=4.604767 and S(10)=66.955511, rounded to 6 decimal places each.
Find S(50), rounded to 6 decimal places.
最大多边形
一条长为2n-3的线段被随机分割成n条整数长度的线段(
记上述过程得到的多边形面积的期望值为E(n)。
例如,对于n=3,长为3的线段只能唯一地分割成3条长为1的线段,组成一个面积为
对于n=4,共有4种不同的分割,每一种分割都由3条长为1的线段和1条长为2的线段组成。所有这些分割都能得到相同的面积为
记
例如,S(3)=0.433013,S(4)=1.732051,S(5)=4.604767以及S(10)=66.955511,都四舍五入到6位小数。
求S(50),四舍五入到6位小数。
Gitalking ...