Irrational jumps
A bouncing point moves counterclockwise along a circle with circumference 1 with jumps of constant length , until it hits a gap of length , that is placed in a distance counterclockwise from the starting point. The gap does not include the starting point, that is .
Let be the sum of the length of all jumps, until the point falls into the gap. It can be shown that is finite for any irrational jump size , regardless of the values of and .
Examples:
, and
.
Let be the maximum of for all primes and any valid value of .
Examples:
, since is the maximal reachable sum for .
Find , rounded to 4 decimal places.
无理数跳跃
一个点沿着周长为1的圆周逆时针跳跃,每次跳跃的长度为固定值,直至其落入一个距离起始位置逆时针距离为、长度为的间隙中为止。这段间隙不会包括起始位置,也就是说。
记为这个点掉入间隙之前所跳跃的总长度。可以证明,当跳跃的步长是无理数时,无论和取什么值,都是有限的。
例如:
,以及
。
记为任取合理的时,对所有素数求的最大值。
例如:
,因为是时能达到的最大值。
求,并保留4位小数。
Be the first person to leave a comment!