0%

Problem 578


Problem 578


Integers with decreasing prime powers

Any positive integer can be written as a product of prime powers: p1a1×p2a2××pkak,
where pi are distinct prime integers, ai>0 and pi<pj if i<j.

A decreasing prime power positive integer is one for which aiaj if i<j.
For example, 1, 2, 15=3×5, 360=23×32×5 and 1000=23×53 are decreasing prime power integers.

Let C(n) be the count of decreasing prime power positive integers not exceeding n.
C(100) = 94 since all positive integers not exceeding 100 have decreasing prime powers except 18, 50, 54, 75, 90 and 98.
You are given C(106) = 922052.

Find C(1013).


质因数幂次下降的整数

任意正整数可以写成一系列质数的幂的乘积:p1a1×p2a2××pkak,
其中pi是不同的质数,ai>0,且对于任意i<j都有pi<pj

若一个正整数满足,对于任意i<j都有aiaj,则称之为质因数幂次下降的正整数。
例如,1,2,15=3×5,360=23×32×5和1000=23×53都是质因数幂次下降的整数。

记C(n)为所有不超过n且质因数幂次下降的整数的数目。
C(100) = 94,因为除了18,50,54,75,90和98外,其它所有不超过100的正整数都是质因数幂次下降的。
此外,还已知C(106) = 922052。

求C(1013)。


Gitalking ...