0%

Problem 580


Problem 580


Squarefree Hilbert numbers

A Hilbert number is any positive integer of the form 4k+1 for integer k0. We shall define a squarefree Hilbert number as a Hilbert number which is not divisible by the square of any Hilbert number other than one. For example, 117 is a squarefree Hilbert number, equaling 9×13. However 6237 is a Hilbert number that is not squarefree in this sense, as it is divisible by 92. The number 3969 is also not squarefree, as it is divisible by both 92 and 212.

There are 2327192 squarefree Hilbert numbers below 107.
How many squarefree Hilbert numbers are there below 1016?


无平方因子希尔伯特数

希尔伯特数指的是能表达为4k+1的正整数,其中整数k0。 我们定义无平方因子希尔伯特数为不能被除1之外的其它希尔伯特数的平方整除的希尔伯特数。例如,117是一个无平方因子希尔伯特数,它的质因数分解是9×13。 而6237则不是无平方因子希尔伯特数,因为它能够被92整除。3969也不是无平方因子希尔伯特数,因为它同时被92212整除。

一共有2327192个小于107的无平方因子希尔伯特数。
有多少小于1016的无平方因子希尔伯特数?


Gitalking ...