Nested square roots
Consider the term that is representing a nested square root. , and are positive integers and and are not allowed to be perfect squares, so the number below the outer square root is irrational. Still it can be shown that for some combinations of , and the given term can be simplified into a sum and/or difference of simple square roots of integers, actually denesting the square roots in the initial expression.
Here are some examples of this denesting:
As you can see the integers used in the denested expression may also be perfect squares resulting in further simplification.
Let F() be the number of different terms , that can be denested into the sum and/or difference of a finite number of square roots, given the additional condition that . That is,
with , , , and all being positive integers, all and .
Furthermore and are not allowed to be perfect squares.
Nested roots with the same value are not considered different, for example , and , that can all three be denested into , would only be counted once.
You are given that F(10)=17, F(15)=46, F(20)=86, F(30)=213 and F(100)=2918 and F(5000)=11134074.
Find F(5000000).
嵌套平方根
考虑形如所代表的嵌套平方根。,和都是正整数,且和不能是完全平方数,因此最外层根号下的数是一个无理数。即便如此,可以看出仍然存在一些,和的组合,使得这一式子能进一步简化为一系列简单整数平方根的和或差,或者说将最初的表达式中的平方根解套。
如下是一些解套的例子:
可以看出,在解套之后的表达式中,根号下的整数可能是完全平方数,因此可以进一步简化。
记F()为满足额外条件,且可以解套成有限个平方根的和或差的表达式的数目。也就是说,
其中,,,和所有的都是正整数,所有的,且。
此外,和不能是完全平方数。
值相同的嵌套平方根视为相同的表达式,例如,,和都可以解套成,因此只被算入一次。
已知F(10)=17,F(15)=46,F(20)=86,F(30)=213,F(100)=2918以及F(5000)=11134074。
求F(5000000)。
Gitalking ...