0%

Problem 585


Problem 585


Nested square roots

Consider the term x+y+z that is representing a nested square root. x, y and z are positive integers and y and z are not allowed to be perfect squares, so the number below the outer square root is irrational. Still it can be shown that for some combinations of x, y and z the given term can be simplified into a sum and/or difference of simple square roots of integers, actually denesting the square roots in the initial expression.

Here are some examples of this denesting:
3+2+2=2+1=2+1
8+15+15=5+3
20+96+12=9+6+32=3+6+32
28+160+108=15+6+52

As you can see the integers used in the denested expression may also be perfect squares resulting in further simplification.

Let F(n) be the number of different terms x+y+z, that can be denested into the sum and/or difference of a finite number of square roots, given the additional condition that 0<xn. That is,
x+y+z=i=1ksiai
with k, x, y, z and all ai being positive integers, all si=±1 and xn.
Furthermore y and z are not allowed to be perfect squares.

Nested roots with the same value are not considered different, for example 7+3+27, 7+12+12 and 7+27+3, that can all three be denested into 2+3, would only be counted once.

You are given that F(10)=17, F(15)=46, F(20)=86, F(30)=213 and F(100)=2918 and F(5000)=11134074.
Find F(5000000).


嵌套平方根

考虑形如x+y+z所代表的嵌套平方根xyz都是正整数,且yz不能是完全平方数,因此最外层根号下的数是一个无理数。即便如此,可以看出仍然存在一些xyz的组合,使得这一式子能进一步简化为一系列简单整数平方根的和或差,或者说将最初的表达式中的平方根解套

如下是一些解套的例子:
3+2+2=2+1=2+1
8+15+15=5+3
20+96+12=9+6+32=3+6+32
28+160+108=15+6+52

可以看出,在解套之后的表达式中,根号下的整数可能是完全平方数,因此可以进一步简化。

记F(n)为满足额外条件0<xn,且可以解套成有限个平方根的和或差的表达式x+y+z的数目。也就是说,
x+y+z=i=1ksiai
其中kxyz和所有的ai都是正整数,所有的si=±1,且xn
此外,yz不能是完全平方数。

值相同的嵌套平方根视为相同的表达式,例如,7+3+277+12+127+27+3都可以解套成2+3,因此只被算入一次。

已知F(10)=17,F(15)=46,F(20)=86,F(30)=213,F(100)=2918以及F(5000)=11134074。
求F(5000000)。


Gitalking ...