0%

Problem 586


Problem 586


Binary Quadratic Form

The number 209 can be expressed as a2+3ab+b2 in two distinct ways:

209=82+385+52209=132+3131+12

Let f(n,r) be the number of integers k not exceeding n that can be expressed as k=a2+3ab+b2, with a>b>0 integers, in exactly r different ways.

You are given that f(105,4)=237 and f(108,6)=59517.

Find f(1015,40).


二元二次型

209可以用两种方式表达为a2+3ab+b2

209=82+385+52209=132+3131+12

f(n,r)为不超过n且恰好可以用r种方式表达为k=a2+3ab+b2的整数k的数目,其中整数a>b>0

已知f(105,4)=237以及f(108,6)=59517

f(1015,40)


Gitalking ...