Best Approximations by Quadratic Integers
Given a non-square integer , any real can be approximated arbitrarily close by quadratic integers , where are integers. For example, the following inequalities approximate with precision :
We call the quadratic integer closest to with the absolute values of not exceeding .
We also define the integral part of a quadratic integer as .
You are given that:
Find the sum of for all non-square positive integers less than 100.
二次整数最佳逼近
给定一个非完全平方的整数,任意实数可以用所谓二次整数任意逼近,其中均为整数。例如如下不等式能够以的精度逼近:
我们记不超过的所有二次整数中最接近的为。
同时我们定义二次整数的“整数”部分为。
已知:
对于所有小于100的非完全平方整数,求其对应的之和。
Gitalking ...