0%

Problem 596


Problem 596


Number of lattice points in a hyperball

Let T(r) be the number of integer quadruplets x, y, z, t such that x2+y2+z2+t2r2. In other words, T(r) is the number of lattice points in the four-dimensional hyperball of radius r.

You are given that T(2) = 89, T(5) = 3121, T(100) = 493490641 and T(104) = 49348022079085897.

Find T(108) mod 1000000007.


超球中的格点数目

记T(r)为满足x2+y2+z2+t2r2的整数四元组xyzt的数目。换言之,T(r)是半径为r的四维超球中格点的数目。

已知T(2) = 89,T(5) = 3121,T(100) = 493490641以及T(104) = 49348022079085897。

求T(108) mod 1000000007。


Gitalking ...