0%

Problem 604


Problem 604


Convex path in square

Let F(N) be the maximum number of lattice points in an axis-aligned N×N square that the graph of a single strictly convex increasing function can pass through.

You are given that F(1)=2, F(3)=3, F(9)=6, F(11)=7, F(100)=30 and F(50000)=1898.
Below is the graph of a function reaching the maximum 3 for N=3:

p604_convex3.png

Find F(1018).


正方形中的凹路径

F(N)为,在一个和坐标系对齐的N×N正方形中,一个严格凹单调增函数所能够穿过的格点数目最大值。

已知F(1)=2F(3)=3F(9)=6F(11)=7F(100)=30以及F(50000)=1898
以下是N=3时达成最大值的函数图象:

p604_convex3.png

F(1018)


Gitalking ...