0%

Problem 609


Problem 609


π sequences

For every n1 the prime-counting function π(n) is equal to the number of primes not exceeding n.
E.g. π(6)=3 and π(100)=25.

We say that a sequence of integers u=(u0,,um) is a π sequence if

  • un1 for every n
  • un+1=π(un)
  • u has two or more elements

For u0=10 there are three distinct π sequences: (10,4), (10,4,2) and (10,4,2,1).

Let c(u) be the number of elements of u that are not prime.
Let p(n,k) be the number of π sequences u for which u0n and c(u)=k.
Let P(n) be the product of all p(n,k) that are larger than 0.
You are given: P(10)=3×8×9×3=648 and P(100)=31038676032.

Find P(108). Give your answer modulo 1000000007.


π序列

对于任意n1素数计数函数π(n)表示不超过n的素数数目。
例如,π(6)=3以及π(100)=25

我们称序列u=(u0,,um)π序列,如果

  • 对于任意nun1
  • un+1=π(un)
  • u中包含至少两个元素

对于u0=10,有三个不同的π序列:(10,4),(10,4,2)和(10,4,2,1)。

c(u)为序列u中非素数元素的数目。
p(n,k)为满足u0nc(u)=kπ序列u的数目。
P(n)为所有大于0的p(n,k)的乘积。
已知:P(10)=3×8×9×3=648以及P(100)=31038676032。

P(108),并将答案对1000000007取模。


Gitalking ...