Problem 61
Cyclical Figurate Numbers
Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:
Triangle | ||
Square | ||
Pentagonal | ||
Hexagonal | ||
Heptagonal | ||
Octagonal |
The ordered set of three
- The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first).
- Each polygonal type: triangle (
), square ( ), and pentagonal ( ), is represented by a different number in the set. - This is the only set of
-digit numbers with this property.
Find the sum of the only ordered set of six cyclic
循环的多边形数
三角形数、正方形数、五边形数、六边形数、七边形数和八边形数等等统称为多边形数。它们分别由如下的公式给出:
三角形数 | ||
正方形数 | ||
五边形数 | ||
六边形数 | ||
七边形数 | ||
八边形数 |
由三个
- 这个集合是循环的,每个数的后两位是后一个数的前两位(最后一个数的后两位也是第一个数的前两位)。
- 前三种多边形数——三角形数(
)、正方形数( )和五边形数( )——在其中各有一个代表。 - 这是唯一一个满足上述性质的
位数有序集。
存在唯一一个包含六个
Gitalking ...