Mirror Power Sequence
For two integers , we define a -MPS (Mirror Power Sequence) to be an infinite sequence of integers such that for all , and .
Examples of such sequences are the two (18,2)-MPS sequences made of alternating 2 and 4.
Note that even though such a sequence is uniquely determined by and , for most values such a sequence does not exist. For example, no -MPS exists for .
Define to be the number of -MPS for some , and .
You are given that , , , and D.
Find .
镜像幂序列
对于两个整数,我们定义满足如下条件的无穷整数序列为-MPS(镜像幂序列):对于所有,都有以及 。
这类序列的例子包括两个由交替的2和4构成的(18,2)-MPS。
注意到,尽管这样的序列总是被,和唯一确定,但对于大多数的取值这样的序列并不存在。例如,不存在任何的-MPS。
记为可以任意选择时所有-MPS的数量,并记。
已知,,,以及。
求。
Gitalking ...