0%

Problem 617


Problem 617


Mirror Power Sequence

For two integers n,e>1, we define a (n,e)-MPS (Mirror Power Sequence) to be an infinite sequence of integers (ai)i0 such that for all i0, ai+1=min(aie,naie) and ai>1.
Examples of such sequences are the two (18,2)-MPS sequences made of alternating 2 and 4.

Note that even though such a sequence is uniquely determined by n,e and a0, for most values such a sequence does not exist. For example, no (n,e)-MPS exists for n<6.

Define C(n) to be the number of (n,e)-MPS for some e, and D(N)=n=2NC(n).

You are given that D(10)=2, D(100)=21, D(1000)=69, D(106)=1303 and D(1012)=1014800.

Find D(1018).


镜像幂序列

对于两个整数n,e>1,我们定义满足如下条件的无穷整数序列(ai)i0(n,e)-MPS(镜像幂序列):对于所有i0,都有ai+1=min(aie,naie)以及 ai>1
这类序列的例子包括两个由交替的2和4构成的(18,2)-MPS。

注意到,尽管这样的序列总是被nea0唯一确定,但对于大多数的取值这样的序列并不存在。例如,不存在任何n<6(n,e)-MPS。

C(n)e可以任意选择时所有(n,e)-MPS的数量,并记D(N)=n=2NC(n)

已知D(10)=2D(100)=21D(1000)=69D(106)=1303以及D(1012)=1014800

D(1018)


Gitalking ...