0%

Problem 619


Problem 619


Square subsets

For a set of positive integers a,a+1,a+2,,b, let C(a,b) be the number of non-empty subsets in which the product of all elements is a perfect square.

For example C(5,10)=3, since the products of all elements of 5,8,10, 5,8,9,10 and 9 are perfect squares, and no other subsets of 5,6,7,8,9,10 have this property.

You are given that C(40,55)=15, and C(1000,1234) mod 1000000007=975523611.

Find C(1000000,1234567) mod 1000000007.


平方子集

对于正整数集a,a+1,a+2,,b,记C(a,b)为其非空子集中满足所有元素之积为完全平方数的子集的数目。

例如,C(5,10)=3,因为除了5,8,105,8,9,109中所有元素之积为完全平方数外,不存在其它5,6,7,8,9,10的子集满足这一性质。

已知C(40,55)=15,以及C(1000,1234) mod 1000000007=975523611

C(1000000,1234567) mod 1000000007


Gitalking ...