0%

Problem 624


Problem 624


Two heads are better than one

An unbiased coin is tossed repeatedly until two consecutive heads are obtained. Suppose these occur on the (M1) th and Mth toss.
Let P(n) be the probability that M is divisible by n. For example, the outcomes HH, HTHH, and THTTHH all count towards P(2), but THH and HTTHH do not.

You are given that P(2)=35 and P(3)=931. Indeed, it can be shown that P(n) is always a rational number.

For a prime p and a fully reduced fraction ab, define Q(ab,p) to be the smallest positive q for which abq(modp).
For example Q(P(2),109)=Q(35,109)=66, because 566=3303(mod109) and 66 is the smallest positive such number.
Similarly Q(P(3),109)=46.

Find Q(P(1018),1 000 000 009).


一个不少,两个正好

不断抛掷一枚标准硬币,直到连续两次抛出正面,记此时已经抛掷的次数为M
P(n)表示Mn整除的概率。比方说,在计算P(2)时,如“正正”、“正反正正”或是“反正反反正正”这样的抛掷结果都要算入,而“反正正”或“正反反正正”就不算。

已知P(2)=35P(3)=931。实际上,可以证明P(n)总是有理数。

对于素数p和最简分数ab,记 Q(ab,p) 为满足abq(modp) 的最小正整数q
例如,Q(P(2),109)=Q(35,109)=66, 这是因为566=3303(mod109)66是满足上式的最小正整数;同理可得Q(P(3),109)=46

Q(P(1018),1 000 000 009)

(注:标题为我国1971年“四五计划”时期提出的计生政策口号)


Gitalking ...