0%

Problem 626


Problem 626


Counting Binary Matrices

A binary matrix is a matrix consisting entirely of 0s and 1s. Consider the following transformations that can be performed on a binary matrix:

  • Swap any two rows
  • Swap any two columns
  • Flip all elements in a single row (1s become 0s, 0s become 1s)
  • Flip all elements in a single column

Two binary matrices A and B will be considered equivalent if there is a sequence of such transformations that when applied to A yields B. For example, the following two matrices are equivalent:

A=(101 001 000)B=(000 100 001)

via the sequence of two transformations “Flip all elements in column 3” followed by “Swap rows 1 and 2”.

Define c(n) to be the maximum number of n×n binary matrices that can be found such that no two are equivalent. For example, c(3)=3. You are also given that c(5)=39 and c(8)=656108.

Find c(20), and give your answer modulo 1 001 001 011.


01矩阵计数

01矩阵指的是只由0或1构成的矩阵。对于任意01矩阵,可以进行以下变形:

  • 交换任意两行
  • 交换任意两列
  • 翻转一行中所有元素(1变成0,0变成1)
  • 翻转一列中所有元素

现有两个01矩阵AB,如果能够通过一系列上述变形能够将A变为B,则称AB等价的。例如,如下的两个矩阵就是等价的:

A=(101 001 000)B=(000 100 001)

只需先翻转A中第三列的元素,然后交换第一行和第二行即可得到B

在所有n×n的01矩阵中,记两两互不等价的01矩阵数目最多为c(n)。例如,c(3)=3c(5)=39,以及c(8)=656108

c(20),并将你的答案对1 001 001 011取余。


Gitalking ...