0%

Problem 630


Problem 630


Crossed lines

Given a set, L, of unique lines, let M(L) be the number of lines in the set and let S(L) be the sum over every line of the number of times that line is crossed by another line in the set. For example, two sets of three lines are shown below:

crossed lines

In both cases M(L) is 3 and S(L) is 6: each of the three lines is crossed by two other lines. Note that even if the lines cross at a single point, all of the separate crossings of lines are counted.

Consider points (T2k1,T2k), for integer k1, generated in the following way:

S0=290797
Sn+1=Sn2mod50515093
Tn=(Snmod2000)1000

For example, the first three points are: (527, 144), (−488, 732), (−454, −947). Given the first n points generated in this manner, let Ln be the set of unique lines that can be formed by joining each point with every other point, the lines being extended indefinitely in both directions. We can then define M(Ln) and S(Ln) as described above.

For example, M(L3)=3 and S(L3)=6. Also M(L100)=4948 and S(L100)=24477690.

Find S(L2500).


交叉的直线

给定一系列相异直线的集合L,记M(L)为集合中直线的数目,而S(L)为所有这些直线与集合中其它直线相交的次数之和。例如,考虑下图所示的两组直线集合:

交叉的直线

在这两种情形中,M(L)均为3S(L)均为6:每个集合有三条直线,每条直线都与其它两条直线各相交一次。注意到,即使这些直线交于同一点,每次相交也都分别计算。

考虑由以下方式构造的一系列点(T2k1,T2k),其中整数k1

S0=290797
Sn+1=Sn2mod50515093
Tn=(Snmod2000)1000

例如,前三个点分别是:(527, 144),(−488, 732),(−454, −947)。给定由这种方式给出的前n个点,并记Ln为将这些点两两连接所得的所有相异直线构成的集合;注意直线总是向两端延长至无限远处。相应地,可以按照上述定义给出M(Ln)S(Ln)

例如,M(L3)=3S(L3)=6。此外,M(L100)=4948S(L100)=24477690

S(L2500)


Gitalking ...