0%

Problem 632


Problem 632


Square prime factors

For an integer n, we define the square prime factors of n to be the primes whose square divides n. For example, the square prime factors of 1500=22×3×53 are 2 and 5.

Let Ck(N) be the number of integers between 1 and N inclusive with exactly k square prime factors. You are given some values of Ck(N) in the table below.

k=0 k=1 k=2 k=3 k=4 k=5
N=10 7 3 0 0 0 0
N=102 61 36 3 0 0 0
N=103 608 343 48 1 0 0
N=104 6083 3363 533 21 0 0
N=105 60794 33562 5345 297 2 0
N=106 607926 335438 53358 3218 60 0
N=107 6079291 3353956 533140 32777 834 2
N=108 60792694 33539196 5329747 329028 9257 78

Find the product of all non-zero Ck(1016). Give the result reduced modulo 1 000 000 007.


平方质因数

对于整数n,称平方后能整除n的质数为n平方质因数。例如,1500=22×3×53的平方质因数包括25

Ck(N)1N之间(含1N)恰好有k个平方质因数的整数之和。下表给出了部分Ck(N)的取值:

k=0 k=1 k=2 k=3 k=4 k=5
N=10 7 3 0 0 0 0
N=102 61 36 3 0 0 0
N=103 608 343 48 1 0 0
N=104 6083 3363 533 21 0 0
N=105 60794 33562 5345 297 2 0
N=106 607926 335438 53358 3218 60 0
N=107 6079291 3353956 533140 32777 834 2
N=108 60792694 33539196 5329747 329028 9257 78

求出所有非零的Ck(1016)的乘积,并将结果对1 000 000 007取余。


Gitalking ...