0%

Problem 633


Problem 633


Square prime factors II

For an integer n, we define the square prime factors of n to be the primes whose square divides n. For example, the square prime factors of 1500=22×3×53 are 2 and 5.

Let Ck(N) be the number of integers between 1 and N inclusive with exactly k square prime factors. It can be shown that with growing N the ratio Ck(N)N gets arbitrarily close to a constant ck, as suggested by the table below.

k=0 k=1 k=2 k=3 k=4
Ck(10) 7 3 0 0 0
Ck(102) 61 36 3 0 0
Ck(103) 608 343 48 1 0
Ck(104) 6083 3363 533 21 0
Ck(105) 60794 33562 5345 297 2
Ck(106) 607926 335438 53358 3218 60
Ck(107) 6079291 3353956 533140 32777 834
Ck(108) 60792694 33539196 5329747 329028 9257
Ck(109) 607927124 335389706 53294365 3291791 95821
ck 6π2 3.3539×101 5.3293×102 3.2921×103 $9.7046\times 10^{-5}

Find c7. Give the result in scientific notation rounded to 5 significant digits, using a e to seperate mantissa and exponent. E.g., if the answer were 0.000123456789, then the answer format would be 1.2346e4.


平方质因数II

对于整数n,称平方后能整除n的质数为n平方质因数。例如,1500=22×3×53的平方质因数包括25

Ck(N)1N之间(含1N)恰好有k个平方质因数的整数之和。可以发现,随着N不断增大,比值Ck(N)N逐渐趋向于一个常数ck,如下表所示:

k=0 k=1 k=2 k=3 k=4 k=5
N=10 7 3 0 0 0 0
N=102 61 36 3 0 0 0
N=103 608 343 48 1 0 0
N=104 6083 3363 533 21 0 0
N=105 60794 33562 5345 297 2 0
N=106 607926 335438 53358 3218 60 0
N=107 6079291 3353956 533140 32777 834 2
N=108 60792694 33539196 5329747 329028 9257 78

c7,并将结果用科学计数法表示,保留5位有效数字,尾数和指数间用e分隔。例如,如果结果是0.000123456789,则应当回答1.2346e4


Gitalking ...