0%

Problem 635


Problem 635


Subset sums

Let Aq(n) be the number of subsets, B, of the set 1,2,,qn that satisfy two conditions:

1) B has exactly n elements;
2) the sum of the elements of B is divisible by n.

E.g. A2(5)=52 and A3(5)=603.

Let Sq(L) be Aq(p) where the sum is taken over all primes pL.
E.g. S2(10)=554, S2(100)mod1 000 000 009=100433628 and S3(100)mod1 000 000 009=855618282.

Find S2(108)+S3(108). Give your answer modulo 1 000 000 009.


子集和

考虑集合1,2,,qn的子集B,且B满足以下两个条件:

1) B中恰好有n个元素;
2) B中元素的和能够被n整除;
记所有此类子集B的数目为Aq(n)

例如,A2(5)=52A3(5)=603

Sq(L)Aq(p),其中p取遍所有满足pL的质数。
例如,S2(10)=554S2(100)mod1 000 000 009=100433628S3(100)mod1 000 000 009=855618282

S2(108)+S3(108),并将答案对1 000 000 009取余。


Gitalking ...