0%

Problem 636


Problem 636


Restricted Factorisations

Consider writing a natural number as product of powers of natural numbers with given exponents, additionally requiring different base numbers for each power.

For example, 256 can be written as a product of a square and a fourth power in three ways such that the base numbers are different.
That is, 256=12×44=42×24=162×14.

Though 42 and 24 are both equal, we are concerned only about the base numbers in this problem. Note that permutations are not considered distinct, for example 162×14 and 14×162 are considered to be the same.

Similarly, 10! can be written as a product of one natural number, two squares and three cubes in two ways (10!=42×52×42×33×23×13=21×52×22×43×33×13) whereas 20! can be given the same representation in 41680 ways.

Let F(n) denote the number of ways in which n can be written as a product of one natural number, two squares, three cubes and four fourth powers.

You are given that F(25!)=4933,
F(100!)mod1 000 000 007=693 952 493,
and F(1 000!)mod1 000 000 007=6 364 496.

Find F(1 000 000!)mod1 000 000 007.


有限制的因数分解

考虑将自然数表示成一系列给定指数的幂的乘积,同时要求这些幂的底数互不相同。

例如,将256表示成一个平方数乘以一个四次方数,且底数互不相同,有三种不同的方式,分别是
256=12×44=42×24=162×14

尽管4224是相等的,但是在这个问题中我们只要求底数不同。还要注意,改变排列方式并不认为是不同的表示方式,例如162×1414×162是相同的表示。

类似地,将10!表示成一个自然数、两个平方数和三个立方数的乘积,有两种方式(10!=42×52×42×33×23×13=21×52×22×43×33×13),而20!则有41680种表示方式。

F(n)为将n表示成一个自然数、两个平方数、三个立方数和四个四次方数的方式总数。

已知F(25!)=4933
F(100!)mod1 000 000 007=693 952 493
F(1 000!)mod1 000 000 007=6 364 496

F(1 000 000!)mod1 000 000 007


Gitalking ...