0%

Problem 638


Problem 638


Weighted lattice paths

Let Pa.b denote a path in a a×b lattice grid with following properties:

  • The path begins at (0,0) and ends at (a,b).
  • The path consists only of unit moves upwards or to the right; that is the coordinates are increasing with every move.

Denote A(Pa,b) to be the area under the path. For the example of a P4,3 path given below, the area equals 6.

lattice path

Define G(Pa,b,k)=kA(Pa,b). Let C(a,b,k) equal the sum of G(Pa,b,k) over all valid paths in a a×b lattice grid.

You are given that

  • C(2,2,1)=6
  • C(2,2,2)=6
  • C(10,10,1)=184 756
  • C(15,10,3)880 419 838mod1 000 000 007
  • C(10 000,10 000,4)395 913 804mod1 000 000 007

Calculate k=17C(10k+k,10k+k,k). Give your answer modulo 1 000 000 007.


带权格阵路径

Pa.ba×b格阵中满足如下性质的路径:

  • 路径从(0,0)开始,到(a,b)结束。
  • 路径只能沿着格阵每次向上或向右走一步;也就是说,每一步都只能使横、纵坐标增加而不能减少。

A(Pa,b)为路径下方区域的面积。以下图给出的一条P4,3路径为例,其下方区域的面积为6

格阵路径

G(Pa,b,k)=kA(Pa,b)。记 C(a,b,k)a×b格阵中所有满足上述条件的路径所对应的G(Pa,b,k)之和。

已知

  • C(2,2,1)=6
  • C(2,2,2)=6
  • C(10,10,1)=184 756
  • C(15,10,3)880 419 838mod1 000 000 007
  • C(10 000,10 000,4)395 913 804mod1 000 000 007

k=17C(10k+k,10k+k,k),并将答案对1 000 000 007取余。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!