0%

Problem 639


Problem 639


Summing a multiplicative function

A multiplicative function f(x) is a function over positive integers satisfying f(1)=1 and f(ab)=f(a)f(b) for any two coprime positive integers a and b.

For integer k let fk(n) be a multiplicative function additionally satisfying fk(ep)=pk for any prime p and any integer e>0.
For example, f1(2)=2, f1(4)=2, f1(18)=6 and f2(18)=36.

Let Sk(n)=i=1nfk(i). For example, S1(10)=41, S1(100)=3512, S2(100)=208090, S1(10000)=35252550 and k=13Sk(108)338787512(mod1 000 000 007).

Find k=150Sk(1012)mod1 000 000 007.


积性函数求和

若定义在正整数上的函数f(x)满足f(1)=1,且对任意两个互质正整数abf(ab)=f(a)f(b),则称f(x)积性函数

对于正整数k,积性函数fk(n)进一步满足,对于任意质数p和任意整数e>0fk(ep)=pk
例如,f1(2)=2f1(4)=2f1(18)=6f2(18)=36

Sk(n)=i=1nfk(i)。例如,S1(10)=41S1(100)=3512S2(100)=208090S1(10000)=35252550k=13Sk(108)338787512(mod1 000 000 007)

k=150Sk(1012)mod1 000 000 007


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!