0%

Problem 64


Problem 64


Odd Period Square Roots

All square roots are periodic when written as continued fractions and can be written in the form:

N=a0+1a1+1a2+1a3+

For example, let us consider 23:

23=4+234=4+11234=4+11+2337

If we continue we would get the following expansion:

23=4+11+13+11+18+

The process can be summarised as follows:

a0=4,1234=23+47=1+2337

a1=1,7233=7(23+3)14=3+2332

a2=3,2233=2(23+3)14=1+2347

a3=1,7234=7(23+4)7=8+234

a4=8,1234=23+47=1+2337

a5=1,7233=7(23+3)14=3+2332

a6=3,2233=2(23+3)14=1+2347

a7=1,7234=7(23+4)7=8+234

It can be seen that the sequence is repeating. For conciseness, we use the notation 23=[4;(1,3,1,8)], to indicate that the block (1,3,1,8) repeats indefinitely.

The first ten continued fraction representations of (irrational) square roots are:

2=[1;(2)], period=1

3=[1;(1,2)], period=2

5=[2;(4)], period=1

6=[2;(2,4)], period=2

7=[2;(1,1,1,4)], period=4

8=[2;(1,4)], period=2

10=[3;(6)], period=1

11=[3;(3,6)], period=2

12=[3;(2,6)], period=2

13=[3;(1,1,1,1,6)], period=5

Exactly four continued fractions, for N13, have an odd period.

How many continued fractions for N10000 have an odd period?


奇周期平方根

所有的平方根写成如下连分数表示时都是周期性重复的:

N=a0+1a1+1a2+1a3+

例如,让我们考虑23

23=4+234=4+11234=4+11+2337

如果我们继续展开,会得到:

23=4+11+13+11+18+

这个过程可以总结如下:

a0=4,1234=23+47=1+2337

a1=1,7233=7(23+3)14=3+2332

a2=3,2233=2(23+3)14=1+2347

a3=1,7234=7(23+4)7=8+234

a4=8,1234=23+47=1+2337

a5=1,7233=7(23+3)14=3+2332

a6=3,2233=2(23+3)14=1+2347

a7=1,7234=7(23+4)7=8+234

可以看出序列正在重复。我们将其简记为23=[4;(1,3,1,8)],表示在此之后(1,3,1,8)无限循环。

10个(无理数)平方根的连分数表示是:

2=[1;(2)],周期为1

3=[1;(1,2)],周期为2

5=[2;(4)],周期为1

6=[2;(2,4)],周期为2

7=[2;(1,1,1,4)],周期为4

8=[2;(1,4)],周期为2

10=[3;(6)],周期为1

11=[3;(3,6)],周期为2

12=[3;(2,6)],周期为2

13=[3;(1,1,1,1,6)],周期为5

N13中,恰好有4个连分数表示的周期是奇数。

N10000中,有多少个连分数表示的周期是奇数?


Gitalking ...