A Long Row of Dice
Consider a row of dice all showing .
First turn every second die,, so that the number showing is increased by . Then turn every third die. The sixth die will now show a . Then turn every fourth die and so on until every th die (only the last die) is turned. If the die to be turned is showing a then it is changed to show a .
Let be the number of dice that are showing a when the process finishes. You are given and .
Find .
一长排骰子
将共个骰子排成一排,均翻至点朝上。
从头开始,每数到第二个骰子(也即第个骰子),就将其翻动至点数加。然后再从头开始,每数到第三个骰子,就将其翻动至点数加;此时第六个骰子的点数应该是点。如此循环,在最后一轮,每数到第个骰子才将其翻动至点数加(也就是说,只翻动最后一个骰子)。在每次翻动前,如果骰子当前是点朝上,则翻动后变为点朝上。
令表示在全部翻动完毕后点朝上的骰子数目。已知, 。
求。
Gitalking ...