0%

Problem 646


Problem 646


Bounded Divisors

Let n be a natural number and p1α1p2α2pkαk its prime factorisation.

Define the Liouville function λ(n) as λ(n)=(1)i=1kαi.
(i.e. 1 if the sum of the exponents αi is odd and 1 if the sum of the exponents is even. )
Let S(n,L,H) be the sum λ(d)d over all divisors d of n for which LdH.

You are given:
S(10!,100,1000)=1457
S(15!,103,105)=107974
S(30!,108,1012)=9766732243224

Find S(70!,1020,1060) and give your answer modulo 1 000 000 007.


有界因数

考虑自然数n及其质因数分解p1α1p2α2pkαk

定义刘维尔函数 λ(n)λ(n)=(1)i=1kαi
(也就是说,若所有指数αi之和为奇数,则该函数取1,若为偶数则取1。)
考虑nLdH范围内的所有因数d,并记这些λ(d)d之和为S(n,L,H)

已知:
S(10!,100,1000)=1457
S(15!,103,105)=107974
S(30!,108,1012)=9766732243224

S(70!,1020,1060),并将你的答案对1 000 000 007取余。


Gitalking ...