Bounded Divisors
Let be a natural number and its prime factorisation.
Define the Liouville function as .
(i.e. if the sum of the exponents is odd and if the sum of the exponents is even. )
Let be the sum over all divisors of for which .
You are given:
Find and give your answer modulo .
有界因数
考虑自然数及其质因数分解。
定义刘维尔函数 为。
(也就是说,若所有指数之和为奇数,则该函数取,若为偶数则取。)
考虑在范围内的所有因数,并记这些之和为。
已知:
求,并将你的答案对取余。
Gitalking ...