0%

Problem 647


Problem 647


Linear Transformations of Polygonal Numbers

It is possible to find positive integers A and B such that given any triangular number, Tn, then ATn+B is always a triangular number. We define F3(N) to be the sum of (A+B) over all such possible pairs (A,B) with max(A,B)N. For example F3(100)=184.

Polygonal numbers are generalisations of triangular numbers. Polygonal numbers with parameter k we call k-gonal numbers. The formula for the nth k-gonal number is 12n(n(k2)+4k) where n1. For example when k=3 we get 12n(n+1) the formula for triangular numbers.

The statement above is true for pentagonal, heptagonal and in fact any k-gonal number with k odd. For example when k=5 we get the pentagonal numbers and we can find positive integers A and B such that given any pentagonal number, Pn, then APn+B is always a pentagonal number. We define F5(N) to be the sum of (A+B) over all such possible pairs (A,B) with max(A,B)N.

Similarly we define Fk(N) for odd k. You are given kFk(103)=14993 where the sum is over all odd k=3,5,7,.

Find kFk(1012) where the sum is over all odd k=3,5,7,.


多边形数线性变换

我们能够找到一组正整数AB,使得对于任意三角形数Tn,其线性变换ATn+B仍然是三角形数。对于所有满足max(A,B)N的这类正整数对(A,B),记(A+B)之和为F3(N)

在三角形数之上,我们可以考虑更一般的多边形数,比如k边形数。第nk边形数的公式为12n(n(k2)+4k),其中n1。例如,取k=3,上述公式就简化为12n(n+1),就是三角形数的公式。

对于五边形数、七边形数,进而任意k为奇数的k边形数,我们都能找到如上所述的数对。比如说,当k=5时,我们能够找到一组正整数AB,使得对于任意五边形数Pn,其线性变换APn+B仍然是五边形数。同样地,对于所有满足max(A,B)N的这类正整数对(A,B),记(A+B)之和为F5(N)

类似地,我们可以对任意奇数k定义函数Fk(N)。已知,仅对奇数k=3,5,7,求和时,kFk(103)=14993

仅对奇数k=3,5,7,求和,求kFk(1012)


Gitalking ...