It is possible to find positive integers and such that given any triangular number, , then is always a triangular number. We define to be the sum of over all such possible pairs with . For example .
Polygonal numbers are generalisations of triangular numbers. Polygonal numbers with parameter we call -gonal numbers. The formula for the th -gonal number is where . For example when we get the formula for triangular numbers.
The statement above is true for pentagonal, heptagonal and in fact any -gonal number with odd. For example when we get the pentagonal numbers and we can find positive integers and such that given any pentagonal number, , then is always a pentagonal number. We define to be the sum of over all such possible pairs with .
Similarly we define for odd . You are given where the sum is over all odd .
Find where the sum is over all odd .
多边形数线性变换
我们能够找到一组正整数和,使得对于任意三角形数,其线性变换仍然是三角形数。对于所有满足的这类正整数对,记之和为。
在三角形数之上,我们可以考虑更一般的多边形数,比如边形数。第个边形数的公式为,其中。例如,取,上述公式就简化为,就是三角形数的公式。
对于五边形数、七边形数,进而任意为奇数的边形数,我们都能找到如上所述的数对。比如说,当时,我们能够找到一组正整数和,使得对于任意五边形数,其线性变换仍然是五边形数。同样地,对于所有满足的这类正整数对,记之和为。
类似地,我们可以对任意奇数定义函数。已知,仅对奇数求和时,。
仅对奇数求和,求。
Gitalking ...