0%

Problem 648


Problem 648


Skipping Squares

For some fixed ρ[0,1], we begin a sum s at 0 and repeatedly apply a process: With probability ρ, we add 1 to s, otherwise we add 2 to s.

The process ends when either s is a perfect square or s exceeds 1018, whichever occurs first. For example, if s goes through 0,2,3,5,7,9, the process ends at s=9, and two squares 1 and 4 were skipped over.

Let f(ρ) be the expected number of perfect squares skipped over when the process finishes.

It can be shown that the power series for f(ρ) is k=0akρk for a suitable (unique) choice of coefficients ak. Some of the first few coefficients are a0=1,
a1=0, a5=18, a10=45176.

Let F(n)=k=0nak. You are given that F(10)=53964 and F(50)842418857(mod109).

Find F(1000), and give your answer modulo 109.


平方跳跃

对于给定的ρ[0,1],我们对变量s0开始进行如下操作:以概率ρ我们给s1,否则我们给s2

我们不断重复上述操作,直到s是一个完全平方数或者s超过了1018。例如,如果s的取值依次为0,2,3,5,7,9,那么我们在s=9时停止操作,此时有两个完全平方数14被跳过了。

f(ρ)为在操作结束前,被跳过的完全平方数的期望数目。

可以证明,f(ρ)可以唯一地表示成幂级数展开的形式k=0akρk,其中系数的前几项分别是a0=1a1=0a5=18a10=45176

F(n)=k=0nak。已知F(10)=53964F(50)842418857(mod109)

F(1000),并将你的答案对109取余。


Gitalking ...