0%

Problem 65


Problem 65


Convergents of e

The square root of 2 can be written as an infinite continued fraction.

2=1+12+12+12+12+

The infinite continued fraction can be written, 2=[1;(2)], (2) indicates that 2 repeats ad infinitum. In a similar way, 23=[4;(1,3,1,8)].

It turns out that the sequence of partial values of continued fractions for square roots provide the best rational approximations. Let us consider the convergents for 2.

1+12=321+12+12=751+12+12+12=17121+12+12+12+12=4129

Hence the sequence of the first ten convergents for 2 are:

1,32,75,1712,4129,9970,239169,577408,1393985,33632378,

What is most surprising is that the important mathematical constant,

e=[2;1,2,1,1,4,1,1,6,1,,1,2k,1,].

The first ten terms in the sequence of convergents for e are:

2,3,83,114,197,8732,10639,19371,1264465,1457536,

The sum of digits in the numerator of the 10th convergent is 1+4+5+7=17.

Find the sum of digits in the numerator of the 100th convergent of the continued fraction for e.


e的有理逼近

2的算术平方根可以写成无限连分数的形式。

2=1+12+12+12+12+

这个无限连分数可以简记为2=[1;(2)],其中(2)表示2无限重复。同样的,我们可以记23=[4;(1,3,1,8)]

可以证明,截取算术平方根连分数表示的一部分所组成的序列,给出了一系列最佳有理逼近值。让我们来考虑2的逼近值:

1+12=321+12+12=751+12+12+12=17121+12+12+12+12=4129

因此2的前十个逼近值为:

1,32,75,1712,4129,9970,239169,577408,1393985,33632378,

最令人惊讶的莫过于重要的数学常数e有如下连分数表示

e=[2;1,2,1,1,4,1,1,6,1,,1,2k,1,]

e的前十个逼近值为:

2,3,83,114,197,8732,10639,19371,1264465,1457536,

10个逼近值的分子各位数字之和为1+4+5+7=17

e的第100个逼近值的分子各位数字之和。


Gitalking ...