0%

Problem 650


Problem 650


Divisors of Binomial Product

Let B(n)=k=0n(nk), a product of binomial coefficients.
For example,
B(5)=(50)×(51)×(52)×(53)×(54)×(55)=1×5×10×10×5×1=2500.

Let D(n)=d|B(n)d, the sum of the divisors of B(n).
For example, the divisors of B(5) are 1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500, 625, 1250 and 2500,
so D(5)=1+2+4+5+10+20+25+50+100+125+250+500+625+1250+2500=5467.

Let S(n)=k=1nD(k).
You are given S(5)=5736, S(10)=141740594713218418 and S(100)mod1 000 000 007=332792866.

Find S(20 000)mod1 000 000 007.


二项式系数乘积的因数

B(n)=k=0n(nk)为二项式系数的乘积。
例如,
B(5)=(50)×(51)×(52)×(53)×(54)×(55)=1×5×10×10×5×1=2500

D(n)=d|B(n)dB(n)的因数和。
例如,B(5)的因数有12451020255010012525050062512502500
因此D(5)=1+2+4+5+10+20+25+50+100+125+250+500+625+1250+2500=5467

S(n)=k=1nD(k)
已知S(5)=5736S(10)=141740594713218418S(100)mod1 000 000 007=332792866

S(20 000)mod1 000 000 007


Gitalking ...