0%

Problem 652


Problem 652


Distinct values of a proto-logarithmic function

Consider the values of log2(8), log4(64) and log3(27). All three are equal to 3.

Generally, the function f(m,n)=logm(n) over integers m,n2 has the property that
f(m1,n1)=f(m2,n2) if

  1. m1=ae, n1=af, m2=be, n2=bf for some integers a,b,e,f or
  2. m1=ae, n1=be, m2=af, n2=bf for some integers a,b,e,f

We call a function g(m,n) over integers m,n2 proto-logarithmic if

  • g(m1,n1)=g(m2,n2) if any integers a,b,e,f fulfilling 1. or 2. can be found
  • and g(m1,n1)g(m2,n2) if no integers a,b,e,f fulfilling 1. or 2. can be found

Let D(N) be the number of distinct values that any proto-logarithmic function g(m,n) attains over 2m,nN.
For example, D(5)=13, D(10)=69, D(100)=9607 and D(10000)=99959605.

Find D(1018), and give the last 9 digits as answer.

Note: According to the four exponentials conjecture the function logm(n) is proto-logarithmic. While this conjecture is yet unproven in general, logm(n) can be used to calculate D(N) for small values of N.


原型对数函数的不同取值

log2(8)log4(64)log3(27)这三个表达式都等于3

一般地,定义在整数m,n2上的函数f(m,n)=logm(n)有如下性质:
f(m1,n1)=f(m2,n2)仅当

  1. m1=aen1=afm2=ben2=bf,其中a,b,e,f均为整数;或者
  2. m1=aen1=bem2=afn2=bf,其中a,b,e,f均为整数。

我们称定义在整数m,n2上的函数g(m,n)原型对数函数,如果它满足

  • 如果存在满足1. 或2. 的整数组a,b,e,f,则g(m1,n1)=g(m2,n2)
  • 并且,如果不存在满足1. 或2. 的整数组a,b,e,f,则g(m1,n1)g(m2,n2)

D(N)记为任意原型整数函数g(m,n)2m,nN上不同取值的数目。
已知,D(5)=13D(10)=69D(100)=9607D(10000)=99959605

D(1018),并给出最后9位数字作为你的答案。

注意:根据四指数猜想,函数logm(n)原型对数函数。尽管这个猜想尚未被证实,但是对较小的N可以用logm(n)来计算D(N)


Gitalking ...