0%

Problem 659


Problem 659


Largest prime

Consider the sequence n2+3 with n1.
If we write down the first terms of this sequence we get:
4,7,12,19,28,39,52,67,84,103,124,147,172,199,228,259,292,327,364,
We see that the terms for n=6 and n=7 (39 and 52) are both divisible by 13.
In fact 13 is the largest prime dividing any two successive terms of this sequence.

Let P(k) be the largest prime that divides any two successive terms of the sequence n2+k2.

Find the last 18 digits of k=110,000,000P(k).


最大的素数

考虑序列n2+3,其中n1,该序列的一开始几项分别是:
4,7,12,19,28,39,52,67,84,103,124,147,172,199,228,259,292,327,364,
可以看出,n=6n=7所对应的项(3952)均能被13整除。
实际上,13是能够整除该序列相邻两项的最大的素数。

对于序列n2+k2,记P(k)为能够整除该序列相邻两项的最大的素数。

k=110,000,000P(k)的最后18位数字。


Gitalking ...