0%

Problem 664


Problem 664


An infinite game

Peter is playing a solitaire game on an infinite checkerboard, each square of which can hold an unlimited number of tokens.

Each move of the game consists of the following steps:

  1. Choose one token T to move. This may be any token on the board, as long as not all of its four adjacent squares are empty.
  2. Select and discard one token D from a square adjacent to that of T.
  3. Move T to any one of its four adjacent squares (even if that square is already occupied).

Allowed moves

The board is marked with a line called the dividing line. Initially, every square to the left of the dividing line contains a token, and every square to the right of the dividing line is empty:

Initial setup

Peter’s goal is to get a token as far as possible to the right in a finite number of moves. However, he quickly finds out that, even with his infinite supply of tokens, he cannot move a token more than four squares beyond the dividing line.

Peter then considers starting configurations with larger supplies of tokens: each square in the dth column to the left of the dividing line starts with dn tokens instead of 1. This is illustrated below for n=1:

Initial setup n=1

Let F(n) be the maximum number of squares Peter can move a token beyond the dividing line. For example, F(0)=4. You are also given that F(1)=6, F(2)=9, F(3)=13, F(11)=58 and F(123)=1173.

Find F(1234567).


无限游戏

彼得在玩一个单人游戏,这个游戏需要一张无穷大的棋盘,棋盘上的每一格都可以放置无限枚棋子。

游戏中的每次行动由以下几个步骤构成:

  1. 选择一枚棋子T,这枚棋子的四个相邻方格不能全部为空。
  2. 从与T相邻的方格中选择并移除一枚棋子D
  3. T移动至四个相邻方格之一(棋子可以堆叠)。

可行行动

棋盘上画有一条竖直线,称为分割线。游戏开始时,在分割线左侧的每一格中放上一枚棋子,而分割线右侧的每一格置空。

初始局面

彼得的目标是,在有限步内,将一枚棋子移动到分割线右侧尽可能远处。然而,他很快发现,即使他有无限枚棋子,他也只能将一枚棋子向右移动至多四格。

于是彼得转而考虑增加初始局面下棋子的数目:在从分割线向左数第d列的所有格子中,一开始放上dn枚而不是1枚棋子。如下图所示为n=1时的初始局面:

n=1时的初始局面

F(n)为此时彼得能够移动棋子到达的最远距离。例如,F(0)=4。已知F(1)=6F(2)=9F(3)=13F(11)=58F(123)=1173

F(1234567)


Gitalking ...