0%

Problem 666


Problem 666


Polymorphic Bacteria

Members of a species of bacteria occur in two different types: α and β. Individual bacteria are capable of multiplying and mutating between the types according to the following rules:

  • Every minute, each individual will simultaneously undergo some kind of transformation.
  • Each individual A of type α will, independently, do one of the following (at random with equal probability):
    • clone itself, resulting in a new bacterium of type α (alongside A who remains)
    • split into 3 new bacteria of type β (replacing A)
  • Each individual B of type β will, independently, do one of the following (at random with equal probability):
    • spawn a new bacterium of type α (alongside B who remains)
    • die

If a population starts with a single bacterium of type α, then it can be shown that there is a 0.07243802 probability that the population will eventually die out, and a 0.92756198 probability that the population will last forever. These probabilities are given rounded to 8 decimal places.

Now consider another species of bacteria, Sk,m (where k and m are positive integers), which occurs in k different types αi for 0i<k. The rules governing this species’ lifecycle involve the sequence rn defined by:
r0=306
rn+1=rn2mod10 007

Every minute, for each i, each bacterium A of type αi will independently choose an integer j uniformly at random in the range 0j<m. What it then does depends on q=rim+jmod5:

  • If q=0, A dies.
  • If q=1, A clones itself, resulting in a new bacterium of type αi (alongside A who remains).
  • If q=2, A mutates, changing into type α(2i)modk.
  • If q=3, A splits into 3 new bacteria of type α(i2+1)modk (replacing A).
  • If q=4, A spawns a new bacterium of type α(i+1)modk (alongside A who remains).

In fact, our original species was none other than S2,2, with α=α0 and β=α1.

Let Pk,m be the probability that a population of species Sk,m, starting with a single bacterium of type α0, will eventually die out. So P2,2=0.07243802. You are also given that P4,3=0.18554021 and P10,5=0.53466253, all rounded to 8 decimal places.

Find P500,10, and give your answer rounded to 8 decimal places.


多态细菌

某种细菌有两种表现形态:α型和β型。每个细菌个体都拥有增殖和在两种形态间突变的能力,但这种能力受到以下规则的约束:

  • 每一分钟,每个细菌个体都必定在同一时间进行变形。
  • 每个α型细菌个体A会随机进行以下两种变形之一,不同个体之间对变形的选择是独立且等概率的:
    • 克隆本身从而创造一个新的α型细菌(并保留A
    • 分裂成3个新的β型细菌(并取代A
  • 每个β型细菌个体B会随机进行以下两种变形之一,不同个体之间对变形的选择是独立且等概率的:
    • 生成一个新的α型细菌(并保留B
    • 死亡

如果一个细胞族群一开始只包含一个α型细菌,可以算出,有0.07243802的概率这个族群会最终全部死亡,而有0.92756198的概率这个族群将永远存续下去,上述概率均保留8位小数。

现在考虑另一种细菌Sk,m(其中km均为正整数),这种细菌有k种不同的形态,分别用αi表示,其中0i<k。这种细菌的生命周期取决于如下定义的序列rn:
r0=306
rn+1=rn2mod10 007

每一分钟,每个αi型的细菌个体A会独立地在0j<m的范围内均匀随机地选择一个整数j,并根据q=rim+jmod5选择其行动::

  • 如果q=0,则A死亡。
  • 如果q=1,则A克隆本身从而创造一个新的αi型细菌(并保留A)。
  • 如果q=2A突变成为α(2i)modk型细菌。
  • 如果q=3A分裂成3个新的α(i2+1)modk型细菌(并取代A)。
  • 如果q=4A生成一个新的α(i+1)modk型细菌(并保留A)。

事实上,我们最初考虑的那种细菌可以被表示为S2,2,其中α=α0β=α1

考虑一个Sk,m细胞族群,一开始族群只包含一个α0型细菌,记Pk,m为该族群最终全部死亡的概率。已知P2,2=0.07243802P4,3=0.18554021P10,5=0.53466253,均保留8位小数。

P500,10,并将你的答案保留8位小数。


Gitalking ...