0%

Problem 670


Problem 670


Colouring a Strip

A certain type of tile comes in three different sizes - 1×1, 1×2, and 1×3 - and in four different colours: blue, green, red and yellow. There is an unlimited number of tiles available in each combination of size and colour.

These are used to tile a 2×n rectangle, where n is a positive integer, subject to the following conditions:

  • The rectangle must be fully covered by non-overlapping tiles.
  • It is not permitted for four tiles to have their corners meeting at a single point.
  • Adjacent tiles must be of different colours.

For example, the following is an acceptable tiling of a 2×12 rectangle:

Acceptable colouring

but the following is not an acceptable tiling, because it violates the “no four corners meeting at a point” rule:

Unacceptable colouring

Let F(n) be the number of ways the 2×n rectangle can be tiled subject to these rules. Where reflecting horizontally or vertically would give a different tiling, these tilings are to be counted separately.

For example, F(2)=120, F(5)=45876, and F(100)53275818(mod1 000 004 321).

Find F(1016)mod1 000 004 321.


彩砖条形铺盖

某种砖块有三种不同的大小,分别是1×11×21×3,同时又有四种不同的颜色:蓝色、绿色、红色和黄色。每种大小和颜色组合的砖块都不限量供应。

这些砖块被用于铺盖大小为2×n的长方形,其中n为正整数。铺盖过程必须满足以下条件:

  • 长方形必须完全被覆盖,且砖块之间不能重叠。
  • 允许有四块砖块共用一个顶点。
  • 相邻的砖块必须有不同的颜色。

例如,下图是对大小为2×12的长方形的一种合理铺盖:

合理铺盖

而下图则是一种不合理铺盖,因为这种铺盖违背了“四块砖块不允许共用一个顶点”的规则:

不合理铺盖

F(n)为大小为2×n的长方形上的合理铺盖总数。上下或左右镜像对称的铺盖视为不同的铺盖。

已知,F(2)=120F(5)=45876F(100)53275818(mod1 000 004 321)

F(1016)mod1 000 004 321


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!