0%

Problem 671


Problem 671


Colouring a Loop

A certain type of tile comes in three different sizes - 1×1, 1×2, and 1×3 - and in k different colours. There is an unlimited number of tiles available in each combination of size and colour.

These are used to tile a closed loop of width 2 and length (circumference) n, where n is a positive integer, subject to the following conditions:

  • The loop must be fully covered by non-overlapping tiles.
  • It is not permitted for four tiles to have their corners meeting at a single point.
  • Adjacent tiles must be of different colours.

For example, the following is an acceptable tiling of a 2×23 loop with k=4 (blue, green, red and yellow):

Acceptable colouring

but the following is not an acceptable tiling, because it violates the “no four corners meeting at a point” rule:

Unacceptable colouring

Let Fk(n) be the number of ways the 2×n loop can be tiled subject to these rules when k colours are available. (Not all k colours have to be used.) Where reflecting horizontally or vertically would give a different tiling, these tilings are to be counted separately.

For example, F4(3)=104, F5(7)=3327300, and F6(101)75309980(mod1,000,004,321).

Find F10(10,004,003,002,001)mod1,000,004,321.


彩砖环形铺盖

某种砖块有三种不同的大小,分别是1×11×21×3,同时又有k种不同的颜色。每种大小和颜色组合的砖块都不限量供应。

这些砖块被用于铺盖宽度为2、长度(周长)为n的圆环,其中n为正整数。铺盖过程必须满足以下条件:

  • 圆环必须完全被覆盖,且砖块之间不能重叠。
  • 允许有四块砖块共用一个顶点。
  • 相邻的砖块必须有不同的颜色。

例如,下图是k=4(分别是蓝色、绿色、红色和黄色)时对大小为2×23的圆环的一种合理铺盖:

合理铺盖

而下图则是一种不合理铺盖,因为这种铺盖违背了“四块砖块不允许共用一个顶点”的规则:

不合理铺盖

Fk(n)为有k种颜色时,大小为2×n的圆环上的合理铺盖总数。(k种颜色不必全都用上。)上下或左右镜像对称的铺盖视为不同的铺盖。

已知,F4(3)=104F5(7)=3327300F6(101)75309980(mod1,000,004,321)

F10(10,004,003,002,001)mod1,000,004,321


Gitalking ...