0%

Problem 672


Problem 672


One more one

Consider the following process that can be applied recursively to any positive integer n:

  • if n=1 do nothing and the process stops,
  • if n is divisible by 7 divide it by 7,
  • otherwise add 1.

Define g(n) to be the number of 1’s that must be added before the process ends. For example:

125+1126÷718+119+120+121÷73+14+15+16+17÷71

Eight 1’s are added so g(125)=8. Similarly g(1000)=9 and g(10000)=21.

Define S(N)=n=1Ng(n) and H(K)=S(7K111). You are given H(10)=690409338.

Find H(109) modulo 1,117,117,717.


再多一个一

从正整数n开始进行如下迭代操作:

  • n=1,则迭代中止;
  • n能被7整除,则除以7
  • 否则加1

g(n)为迭代过程中加1的次数。例如:

125+1126÷718+119+120+121÷73+14+15+16+17÷71

总共有八次加1的操作,因此g(125)=8。类似地,g(1000)=9g(10000)=21

S(N)=n=1Ng(n)H(K)=S(7K111)。已知H(10)=690409338

H(109)并对1,117,117,717取余。


0 comments
Anonymous
Markdown is supported

Be the first person to leave a comment!