0%

Problem 676


Problem 676


Matching Digit Sums

Let d(i,b) be the digit sum of the number i in base b. For example d(9,2)=2, since 9=10012. When using different bases, the respective digit sums most of the time deviate from each other, for example d(9,4)=3d(9,2).

However, for some numbers i there will be a match, like d(17,4)=d(17,2)=2. Let M(n,b1,b2) be the sum of all natural numbers in for which d(i,b1)=d(i,b2). For example, M(10,8,2)=18, M(100,8,2)=292 and M(106,8,2)=19173952.

Find k=36l=1k2M(1016,2k,2l), giving the last 16 digits as the answer.


相同数字和

d(i,b)为数ib进制下的数字和。例如,d(9,2)=2,因为9=10012。不同进制下的数字和通常是不同的,例如d(9,4)=3d(9,2)

然而,对于某些数i,在不同进制下的数字和可能会相同,比如d(17,4)=d(17,2)=2。记M(n,b1,b2)为所有满足ind(i,b1)=d(i,b2)的自然数i之和。例如,M(10,8,2)=18M(100,8,2)=292M(106,8,2)=19173952

k=36l=1k2M(1016,2k,2l),并给出其最后16位数字作为你的答案。


Gitalking ...