0%

Problem 678


Problem 678


Fermat-like Equations

If a triple of positive integers (a,b,c) satisfies a2+b2=c2, it is called a Pythagorean triple. No triple (a,b,c) satisfies ae+be=ce when e3 (Fermat’s Last Theorem). However, if the exponents of the left-hand side and right-hand side differ, this is not true. For example, 33+63=35.

Let a,b,c,e,f be all positive integers, 0<a<b, e2, f3 and cfN. Let F(N) be the number of (a,b,c,e,f) such that ae+be=cf. You are given F(103)=7, F(105)=53 and F(107)=287.

Find F(1018).


费马式方程

若正整数三元组(a,b,c)满足a2+b2=c2,则称之为毕达哥拉斯三元组。根据费马大定理,对于任意e3,不存在三元组(a,b,c)满足ae+be=ce。不过,若等号左侧和右侧所选择的指数不同,则方程可能有解。例如,33+63=35

a,b,c,e,f为正整数,且0<a<be2f3cfN。记F(N)为使得ae+be=cf的数组(a,b,c,e,f)总数。已知F(103)=7F(105)=53F(107)=287

F(1018)


Gitalking ...