0%

Problem 681


Problem 681


Maximal Area

Given positive integers abcd, it may be possible to form quadrilaterals with edge lengths a, b, c, d (in any order). When this is the case, let M(a,b,c,d) denote the maximal area of such a quadrilateral.
For example, M(2,2,3,3)=6, attained e.g. by a 2×3 rectangle.

Let SP(n) be the sum of a+b+c+d over all choices abcd for which M(a,b,c,d) is a positive integer not exceeding n.
SP(10)=186 and SP(100)=23238.

Find SP(1 000 000).


最大面积

对于给定正整数abcd,有时能找到边长分别为abcd的四边形(未必按照这一顺序)。当存在这样的四边形时,记M(a,b,c,d)为所有此类四边形的最大面积。
例如,M(2,2,3,3)=6,这一最大面积在构成2×3的长方形时取得。

考虑所有满足abcdM(a,b,c,d)为不超过n的正整数的四元组(a,b,c,d),并记所有这些四元组对应的a+b+c+d之和为SP(n).
已知SP(10)=186SP(100)=23238

SP(1 000 000)


Gitalking ...